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Abstract 

A structure-factor calculation for 2D rotation-translation 
coupling with planar molecules is presented. The start- 
ing point is a continuous description of the scattering- 
length-density distribution for a planar molecule that ro- 
tates around its symmetry axis. For the example of a 
molecule with threefold symmetry at a site with fourfold 
symmetry, the successive correction terms to the conven- 
tional rotational form factor are evaluated. This approach 
yields results equivalent to the split-molecule model. This 
is shown by an example of a structure refinement on 
Ni(ND3)6Br2 single-crystal data. 

1. Introduction 

The description of the thermal motion in the structure 
analysis of more complex molecular solids continues to be 
a difficult problem. Particularly in the presence of orien- 
tational disorder, powder samples give rise to only a few 
Bragg peaks of notable intensity, while there may be many 
model parameters. For atoms (ions), a rather detailed 
description of the probability density functions (p.d.f.) 
beyond harmonic motions or the corresponding struc- 
ture factors are available [cumulant expansion, Gram- 
Charlier expansion (International Tables for X-ray Crys- 
tallography, 1974)]. Frequently, disorder aspects are de- 
scribed by split-atom models. For (rigid) molecules or 
molecular groups, the above approaches can be used for 
describing the centre-of-mass (c.o.m.) positions of the 
molecules. Additionally, rotational motions and, possibly, 
orientational disorder have to be introduced. Again this 
can be done either with continuous or with discrete mod- 
els. In the first case, the density distribution on a spherical 
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surface (2D: circle) is expanded into symmetry-adapted 
surface harmonics (2D: trigonometric functions). In the 
second case, an appropriate set of discrete molecular ori- 
entations is chosen. 

Apparently, there are cases where c.o.m, motions and 
rotational motions do not occur independently and there 
is a pronounced rotation-translation coupling (RT coup- 
ling). A three-dimensional example, CBr4-I, was de- 
scribed quite a while ago (Press, Grimm & Hiiller, 1979; 
Hohlwein, 1984). 

(i) In the first case, a p.d.f., containing both a positional 
(c.o.m.) and an angular variable, is expanded (Taylor 
expansion) into symmetry-allowed terms and powers of 
displacement variables and derivatives of the p.d.f, are 
combined to give products that are totally symmetric with 
respect to the symmetry operations of the site symmetry. 
One may note a simple meaning of RT coupling: the orien- 
tational distribution depends on the c.o.m, position, which 
means that it is different for the equilibrium or displaced 
c.o.m, position. This is most pronounced for asymmetric 
molecules (like triangular groups etc.) at a site with a cen- 
tre of symmetry. 

(ii) An equivalent access is the 'split-molecule' ap- 
proach, which can be introduced in two successive steps. 
C.o.m. displacements lead to low-symmetry sites with 
a preference for certain orientations. The first approach 
consists in taking a discrete distribution of the c.o.m.'s 
over all symmetrically equivalent sites of a lattice posi- 
tion in combination with continuous orientational distri- 
butions. It is not particularly useful for practical purposes, 
but demonstrates the meaning of the model parameters of 
(i) more explicitly. The most general split-molecule ap- 
proach uses one or several discrete c.o.m, positions and a 
set of discrete orientations. A p.d.f, conforming with the 
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site symmetry is guaranteed by applying the appropriate 
symmetry operations and has all the advantages and dis- 
advantages of an unspecific model. 

A first paper (Press, Grimm & H/filler, 1979) dealt with 
3D rotating molecules in the continuous description. The 
transition to the simpler case of a single rotational de- 
gree of freedom is nontrivial and appears useful. Also, 
there is recent evidence for the importance of RT coupling 
for N D  3 motion in Ni(ND3)6Br x and related compounds 
(Hoser, Prandl, Schiebel & Heger, 1990; Schiebel, Hoser, 
Prandl & Heger, 1990). However, as will be seen in the 
study of specific examples, the neglect of the 3D aspect 
of motions is not always obvious. 

In §2, we discuss the rotation-translation coupling for 
planar molecules with a single rotational degree of free- 
dom in a continuous description analogous to that given 
by Press, Grimm & H/filler (1979). The third chapter 
deals with the split-molecule approaches. Finally, sev- 
eral models are discussed using recent neutron data for 
Ni(ND3)6Br2. 

2D R O T A T I O N - T R A N S L A T I O N  C O U P L I N G  W I T H  P L A N A R  M O L E C U L E S  

site symmetry, p~oll(r ') is a vector with two components, 
a = x, y: 

(I) / 0 
[Prot( r )]a = ~--~Prot(r'lR)[R--Ro 

and p~o2~(ff) is a 2 x 2 tensor with elements 

2. Inclusion of  rotation-translation coupling 
for a planar (triangular) molecule 

In a previous paper (Press, Grimm & H/filler, 1979), we 
have given a formulation only for the correlations be- 
tween orientation and c.o.m, position of 3D molecular ro- 
tation, with CH4 and CN groups as examples. Below we 
derive the corresponding expressions for a 1D rotor (pla- 
nar molecules such as CH3 groups, NH3NO3 etc.). The 
calculation is performed along the same lines as in Press, 
Grimm & Hilller (1979), while the starting point is that of 
Press & H/iller (1973). 

According to Press & Hiiller (1973), the density distri- 
bution p(r) can be expressed in terms of a translational 
p.d.f, and a conditional probability prot(r'lR) of finding a 
scatterer at r ~ -- r - R if the molecular centre of mass is 
at R: 

a e b  

J pr(R)prot(r'lR) dR. (1) p(r) 

In Prot, the orientational distribution depends on the 
centre-of-mass position, that is, the effect of steric hin- 
drance on asymmetric molecules may be included, pr is 
the translational p.d.f, of the molecular c.o.m. As has been 
suggested previously (Press, Grimm & H/filler, 1979), 
Prot(r t[R) is then expanded into a Taylor series. This is per- 
missible as long as the translational displacements R J = 
R - R0 are small* (R0 = mean c.o.m, position): 

Prot(r'[R) (0), , ,+ (I), , ,n ,  I ,^(2)r_,,r,, = Protl, r ) Protl, r )K + ~R [rot~,t )1~ + . . . ,  (2) 

with p~°~(r') = Prot(r'lR)lR=a0 the well known orienta- 
tional p.d.f., which reflects both the molecular and the 

*As the values of W are small compared to R0 and if, the notation 
AR ~ would be preferable but we continue the notation of Press & Hiiller 
(1973). 

(2) , 0 0 
[Prot( r )]o,/3 - OR,~ OR~ Prot(r'[R)[R=Ro. 

The structure factor, correspondingly, may be written as 

grot(Q) = ~ F(ro/)t(Q), (3) 
l 

where the different orders I correspond to the order of the 
expansion in (2). 

As pr(R) has the full site symmetry (or even higher 
symmetry, in the case of an isotropic Debye-Waller fac- 
tor), Prot(fflR) must possess full site symmetry, too. The 
example that we shall discuss is that of a triangular group 
(symmetry 3m) at a site with symmetry 4mm, which is re- 
alized by an ND3 group with symmetry axis along cubic 
axes, as in Ni(ND3)6Br2. 

2.1. Conventional rotational form factor 

For a planar molecule that rotates around its (primary) 
_(0) t_t symmetry axis, the probability density Prot k" ), or the cor- 

responding scattering-length density, can be written as 

p(0) r_l~ 
rotl.' ) = (1/27rr)6(r'- O)6(z')g(qJr). 

Here, cylindrical coordinates r t -- (r t, ~Jr, z ~) have been 
used; Q is the distance of the atoms from the molecular 
centre of mass. g(qJr) is expanded into trigonometric func- 
tions and 

oo 

g ( ~ t )  = E[¢m exp (im~Jr) + ¢--m exp (-imqJr) ]. 
m=O 

Ifg((Yr) = g(--~P~r), that is in the presence of a mirror plane, 
Cm is real and Cm = c-re. As in Press & H/filler (1973) a 
'formal development'  can be made that is based on an ex- 
pansion of the density distribution in a molecular frame 
(this introduces the molecular symmetry), a transforma- 
tion Aqo to the crystal frame (this introduces the site sym- 
metry) and a distribution functionf(A~p) for this angle Acp 
(see Appendix). The structure factor, taken in units of the 
scattering length of the rotating atoms (3bo for ND3), 

P 
0) / (0) t 

~ot(Q) (iQr ')  = Prot ( r )  exp dr ' ,  
d 

is calculated after expansion of the second factor in 

exp (iQr ')  = exp (iQzz') exp [iQrr' cos (qOQ - qJr)] 

with Q = (Or, cpo, Qz) into Bessel functions (Jr). After 
integration over r ' ,  the structure factor is obtained. 
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o o  

0) 
F~r°t(Q) = Z itJt(Qrp){cl exp (il~OQ) + c-t  exp (--ilq°o) }" 

/=0  

If the density distribution in real space is expressed in 
terms of cos (3mcp'~) and sin (3m~O'r), exactly these expres- 
sions with qo' r + qo 0 reappear in the curly brackets. If 
we return to our specific example of a triangular molecule 
(equilateral triangle) with a fourfold cubic axis as normal, 
only indices m = 4m' and hence arguments 12m'~p' r are al- 
lowed. As in Press & Hfiller (1973), all terms in (3) should 
be multiplied by exp (iQRo) exp [ -  W(Q)], thus introduc- 
ing the centre-of-mass position of the planar groups and a 
Debye-Waller factor, which is isotropic within the Qx-Qy 
plane. This description of the structure factor can easily be 
generalized to several molecular groups. 

An anisotropy of the Debye-Waller factor or higher cu- 
mulants of a displaced molecule certainly may..:bbe intro- 
duced. But this renders the calculation somewhat more 
tedious. 

2.2. (1) . Frot(Q). linear coupling 
^(1)/_t~Dt As for the case of a 3D rotator, the product Prot t.t )ix 

must have the full site symmetry, i.e. belong to the identity 
representation which is F = A l, for the point group 4mm. 

(1) 
[Prot (r')]o~ and R ' ,  therefore, must belong to the same rep- 
resentations ~' (Lax, 1974) and, as R'  is involved, this is 
the vector representation. The displacement vector R' = 
IR'l(cos ~ ,  sin ~o~) has E symmetry, so only terms with 

(1) t E symmetry are retained in the Fourier series of [Prot ( r ) ] .  

In 4ram, these are pairs of functions cos lcP'r, sin l~o'~ with 
I odd so 
p(1)/_t~ 1 

rotk'- )= ~ r , 6 ( r '  - O)6(z') Z cll)(coslggtr' +Sinlggtr) 
IE~  = E 

combine to totally symmetric invariants in the structure 
1) factor. With ~ot (Q) again taken in units of the scattering 

length of the rotating atoms, 
o o  

1) 
F~r°t(Q) = Z ilJl(Qr0)i(u2) 

/=0  

(1)(co s X Qrc I , ggQ cos lggo -4- sin ~OQ sin lqoo). 

Because of the molecul~ symmetry, only trigonometric 
functions of order I = 3l, I odd contribute. Group theo- 
retical considerations give the sign in the bracket: - for 
1 = 3, + for l = 9, - for l = 15 etc. 

Explicitly, for equilateral-triangle-type molecules, the 
two leading terms read 

1) 
F~rot (Q) (u2)Q,{J3(QrQ)C~I)(cos ~OO cos 3qOQ 

--  Sin ~ O  Sin 3~PO) 

-J9(OrR)C(91) (cos ~o O COS 9ggO 

+ sin ~O sin 9~o o) -4-...} 

(u2)QrJ3(QrO)C~ 1) COS 4qoO 

-<u2)QrJg(QrO)C(91) COS 8q0O + . . . .  

~ol~(Q) is the leading correction term to the usual rota- 
0) tional form factor ~ot (Q) = Frot (Q). There are rather few 

trigonometric functions contributing, as only terms which 
fulfil the conditions of molecular symmetry and transform 
like a vector are nonzero. Additionally, the Bessel func- 
tions JI(QrQ) ensure rapid convergence if the argument 
Q,o is not too large. The cl 1) have the dimension of recip- 
rocal length. The appropriate quantity for further discus- 
sion is the product c11)(u2): it is large when both c.o.m. 
displacement and departures from the average symme- 
try accompanying these displacements (due to steric hin- 
drance effects, for example) become large. We shall return 
to this in the next section. 

2.3. (2) . Frot(Q). quadratic coupling 

Next we give the results for a quadratic coupling, which 
is also present for molecules with a centre of symmetry. 
x 2 _ y2 __ R'2 cos 2qo~ and 2xy = R '2 sin 2qo~ have Bl and 
B2 symmetry, respectively. As before, only trigonometric 
functions that have the same symmetry B1, B2 contribute 
as the sums of the product ~ '  (2), , ,n,  K Prot ( r ) K  must be totally 
symmetric. Therefore, only terms of order l = 6 have to 
be included in our example of an equilateral triangle at a 
site of symmetry 4mm (higher-order terms l = 18, 30 , . . .  
can be neglected). 

R, (2), t .nt  t t Prottr )K = Z [Ra(q°R)'Rt/3 (qo~)] 
~,/3 

[Prot ( )]ac~ [Pmt ( ) ] a  
x (2) ,- (2) 'r ' '  /3 

[Prot(r')]e~ tPrott )1/3/3 

( ) × R S ( ~  ) 

= 21r,.~5(/- ~@5(zt){c(62,)s, cos6qo' r 

+ C  (2) Sin6~tr + .} (4) 6,B2 " " 

C 2) + C (2) 
X 6,B, 6,Bz COS (4~o0) 

2 

c (2) _ c (2) 
6,B1 6,B2 cos (8~oo)) + . . . .  (5) 

2) For large-amplitude centre-of-mass motions, ~ot (Q) may 
well be a sizable contribution to the structure factor. Note 
that the magnitude of the contribution is now ,-~ (U2) 2. 

3. 'Split-molecule' approach 

As an alternative, a generalized version of Guthrie & Mc- 
Cullough's ( 1961) method, also called the Frenkel model, 
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Table 1. Compar i son  o f  the di f ferent  mode l s  f o r  the Ni(ND3)6Br:  da t a  

Model A B C D E 

Scale 17.3 (4) 17.4 (2) 17.4 (2) 
X (D3) (A) 
Y(D3) (]k) 
Z (D3) (]k) 2.505 (6) 2.510 (2) 2.510 (2) 
go (D3) (o) 
0 (1)3) (o) 
~b (D3) (o) 
cct) (]k -1) -2.50 (9) -2.50 (9) 

c~1)o (]k-l) 0.3 (9) 
¢~2)! (]k--2) 1.1 (7) 

c (i~) (]k-z) -2.3 (7) 6,B2 
Q (D3) (]k) 0.92 (1) 0.944 (4) 0.946 (4) 
h (ND3) (]k) 0.36 (1) 0.362 (4) 0.362 (4) 
(uZ)Ni (]k2) 0.021 (2) 0.0222 (8) 0.0220 (7) 
(U2)Br (]k2) 0.032 (2) 0.033 (1) 0.034 (1) 

(]k2) 0.028 (3) 0.028 (l) 0.028 (1) 
(U2)DII (]k2) 0.052 (4) 0.058 (2) 0.058 (2) 
(U2)D.I_ (]k2) 0.054 (4) 0.049 (2) 0.049 (2) 
Parameters 10 11 14 
R 0.16 0.081 0.075 
Rw 0.18 0.075 0.071 
S 12 4.7 4.7 

17.3 (2) 17.6 (1) 
-0.126 (5) --0.145 (6) 

0.102 (1) 0.127 (4) 
2.509 (3) 2.506 (3) 
4 (1) 48.7 

--6.5 (4) 
-20  (1) 

0.948 (4) 0.953 (2) 
0.361 (4) 0.361 (3) 
0.0219 (7) 0.0219 (4) 
0.034 (1) 0.0342 (6) 
0.0288 (9) 0.0287 (5) 
0.025 (4) 0.032 (2) 
0.049 (1) 0.0450 (8) 
0.048 (2) 0.036 (3) 

13 14 
0.076 0.053 
0.069 0.043 
4.6 2.9 

For the models using the continuous descfi.ption of the density distribution (A, B, C), the c.o.m, of the deuterium scattering density is placed in 
24(e) (0,0,z), z = Z(D3)/ao (a0 = 10.382 A, space group Fm3m). The nitrogen position is determined via the ammonia geometry, h(ND3) is the 
distance between the c.o.m, of the D 3 group and the N atom. N atoms are located in 24(e) (0,0,z) with z -- [Z(D3) - h(ND3)]/ao, p(D3) is the 
radius of the D3 circle, which is in a plane perpendicular to [001]. For all models (A-D), the II components of the Debye-Waller factors are taken 
within this plane. The parameters used for the refinement of the split-molecule models (D, E) were chosen differently from the crystallographic 
convention, in order to match the parameters of models A-C as closely as possible. Instead of refining the atomic positions, we have determined 
the coordinates of the deuterium c.o.m, and the Euler angles describing the rotations and tilt of the ammonia molecule. This gives the deuterium 
c.o.m, in a general position: 192(/) (x,y,z), x = X(D3)/ao, y = Y(D3)/ao, z = Z(D3)/ao. With all Euler angles equal to zero, D1 is in 192(/) (xl, Yl, 
Zl), Xl = IX(D3) + Q(D3)]/a0, Yl = Y(D3)/ao, Zl = Z(D3)/ao and N in 192(/) (x,y,z), x = X(D3)/ao, y = Y(D3)/ao, z = [Z(D3) - h(ND3)]/ao. For 
comparison, the atomic positions of model E are given: 

Atom Site x y z 
N 192(/) -0.0110 0.0097 0.2058 
D 1 192(/) 0.0663 0.0566 0.2440 
D2 192(/) -0.0920 0.0594 0.2301 
D3 192(/) -0.0162 --0.0792 0.2472 

R = ~ AIFII ~, IFIob~; Rw (E wZxlelV ~ wlFl~obs) '/2 = ; S = RwlRexp with Rexp = [(n - p)l E wlVlZobs] 1/2 

The parameters determining the ammonia geometry, h(ND3) and Lo(D3), show a remarkable independence of the different models. Compared with 
the values in Herzberg (1945), the molecule appears to be somewhat deformed, which means an ,,~ 5% decrease in h(ND3) and an insignificant 
(,-~ 1%) increase in Q(D3). A more pronounced deformation, but towards a prolate form, has been reported for the Ca(ND3)6 compound by Damay, 
Leclercq & Chieux (1990). 

m a y  be considered:  they  p roposed  a descr ip t ion  of  ori- 
en ta t ional  d isorder  by  sets of  s y m m e t r y - r e l a t e d  or ienta-  

t ions.  Th is  concep t  m a y  also be used for  the descr ip t ion  
of  RT coupl ing .  One  starts wi th  a set o f  M equ iva len t  dis- 
p l a c e m e n t  vectors ,  w h i c h  are s y m m e t r y  re la ted (= ' spl i t  
c.o.m, pos i t ions ' ) .  Co r r e spond ing  to the local  s y m m e t r y  
at one  g iven  d i sp laced  posi t ion,  one  or several  (N) discrete  
molecu la r  or ien ta t ions  m a y  be in t roduced.  The  who le  set 
of  M N  ' sp l i t  m o l e c u l e s '  is then  genera ted  by  s y m m e t r y  
opera t ions  wi th  an  occupancy  of  one  ind iv idua l  or ienta-  
t ion  p = ( M N ) -  1 

There  is a c lear  d i sadvan tage  in  this  approach.  Bo th  
the d i sp lacement s  R '  and the or ienta t ions  qOjk are discrete  

quant i t ies .  This ,  however ,  g ives  r ise to re la t ive ly  large 
Four ier  c o m p o n e n t s  (Bragg  in tensi ty)  for  large Q, except  
if  h igh  va lues  of  M and N are taken.  The  t ransi t ion to 
a con t inuous  descr ip t ion,  e.g. by  in t roduc ing  anisot ropic  
D e b y e - W a l l e r  factors ,  un fo r tuna te ly  requi res  m a n y  ad- 
di t ional  parameters .  O n  the other  hand ,  even  the mos t  
s impl is t ic  approach  a long  the above  l ines  p rov ides  a use- 
ful test  of  the ca lcu la t ions  based  on Prot(r '[R). Also,  the  
me thod  can  be used as an ind ica t ion  for  in t roduc ing  ap- 
propr ia te  mechan i s t i c  or con t inuous  models .  

We have  also fo l lowed  an in te rmedia te  method.  Dis-  
crete c.o.m, d i sp lacement s  R '  are in t roduced  but  a con-  
t inuous  descr ip t ion  by  expand ing  into s y m m e t r y - a d a p t e d  
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functions is chosen for the orientational p.d.f. For a 
demonstration of the method, we again use the example 
of a triangular molecule of symmetry 3m at a site of sym- 
metry 4ram. For the sake of simplicity, instead of general 
displacement vectors only displacements along symme- 
try lines are considered. There are four equivalent vec- 
tors R'l = (A,0), R'2 = (0, A), Rt3 = ( - A , 0 ) ,  R'4 = 
(0, - A ) ;  here A denotes the magnitude of the displace- 
ment of the molecular c.o.m. In the general case, there 
are eight such vectors. Now an expansion into symmetry- 
adapted surface functions is performed for each site with 
a displaced molecule. For site 1, p(~) _~ (1 + ca cos 3~p + 
c6 cos 6(p + . . . )  (mirror symmetry retained!). The contri- 
bution to the structure factor for this particular site then 
reads 

1 exp (iQrA cos ~Q)[Jo(QrP) f t  (Qr, ~q) = -~ 

+ i3c3J3(Qr~) cos  3 ~ Q  

+ i6c6J6(Qrp) cos  6 ~ Q  + . . . ] .  

The other expressions are obtained after rotation by 90, 
180 and 270 ° , respectively. Addition of these contribu- 
tions yields, with the different orders I of ~o°t(Q) written 
down separately, 

1Jo(Qrp)[cos (QrA cos 99Q) + cos (Qr A sin ~Q)] 

(l=O) 
1 -~c3J3(QrQ)[cos 3~Q sin (Qr A cos  ~Q) 

+ sin 379Q sin (Qr A sin qOQ)] (l = 3) 

etc. After expansion of the trigonometric functions into 
a series of Bessel functions and for small arguments A, 
exactly the same expressions as in § 2 are obtained. [Note: 
the sin 6qOQ term in (4) is only obtained if general dis- 
placements are used.] Within this approach, only small 
displacements are considered. Therefore, the RT coupling 
enters via a product c3A, that is the product of a modula- 
tion amplitude and a displacement amplitude. 

4. Example Ni(ND3)6Br2 

A comparison of different formulations of the structure 
factor is here applied in a practical case. The data are taken 
from a neutron diffraction experiment on an Ni(ND3)6Br2 
single crystal (Hoser, Prandl, Schiebel & Heger, 1990). 
The three D atoms are distributed at the comers of a 
square; this is a pronounced departure from the distribu- 
tion that would be generated by an orientationally disor- 
dered ammonia molecule with absence of RT coupling. 
As discussed above, this would lead to a distribution on 
a circle with modulations of the order of 12 m. Rather 
than that, the p.d.f, reflects the fourfold site symmetry. 
In Hoser, Prandl, Schiebel & Heger (1990), a discussion 
of RT coupling is performed with a split-molecule ap- 
proach and 26 parameters have been refined. We use the 

data measured and analysed earlier [ 192 independent re- 
flections, corrected for extinction; Hoser, Prandl, Schiebel 
& Heger, (1990)] in order to demonstrate the algorithms 
suggested in this paper, which need only 14 parameters at 
most. The estimated parameters for the different models 
are given in Table 1. 

The first three models, A, B, C, use the continuous de- 
scription of the density distribution. Sucessively higher 
expansion coefficients are taken into the refinement. 

(A) A model describing orientational disorder, with- 
out RT coupling. The structure factor is calculated with 
t~rO~ = Jo(QrO) only, the next term is proportional to 
J12(Qrp) cos (12~Q) and can be neglected. This model has 
the smallest number of parameters, ten, but yields a rela- 
tively poor Rw = O. 18. 

(B) The same model with one additional parameter, c~ 1), 
describing RT coupling in lowest order: 

Frot = F~r0~ + ~rrol~ = Jo(QrQ) + c~ ,> (u2)QrJ3(Qrp)cos (499Q). 

The fourfold axis, as in the analysis of Hoser, Prandl, 
Schiebel & Heger (1990), is reflected by the cos  (4~Q)  
term. Terms containing J9(Qr~) and Bessel functions of 
higher order are neglected. This additional parameter re- 
suits in a reduction of Rw by a factor of more than two to 
0.075. This is taken as evidence for the importance of RT 
coupling. 

(C) Higher-order terms for the description of RT coup- 
ling are taken into the refinement: 

(1) (u2}QrJ3(QrQ) cos  (4~O) Frot = Jo(QrO) + c3 

- c(91) (u2)QrJ9(QrO) cos  (8~DQ) 

l (u2)2(~rrJ6(Qrp) +~ 

[/~(2) + ~(2) 
X t~C6,B1 C6,B2 ) COS (4qOQ) 

+. (2) ,..(2) 
(C6,BI -- '~6,B2] COS (8~Q)]  

but the three additional parameters yield only a slight im- 
(1) provement: Rw = 0.071. The fact that parameter c 3 re- 

mains unchanged underlines the significance and inde- 
pendence of this parameter. 

So model B gives the most satisfactory result within the 
continuous description. 

The next two models, D, E, use a discrete description 
of the density distribution. The eight locations of the ' 1/8 
ND3 molecules' are given by eight symmetry-related dis- 
placement vectors and the Euler angles. 

(D) The motion of the ammonia molecule is described 
within the XY plane. Four parameters are required for the 
displacement vector and the orientation angle. This is the 
discrete equivalent to the continuous description of mod- 
els A-C. With 13 parameters, an Rw of 0.059 is obtained, 
in agreement with the results of models B and C. As the N 
atoms are also subject to the translational displacements 
of the whole molecule, this additional disorder contribu- 
tion is compensated by a reduction of (U2)u,. 
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(E) Leaving the main scope of the present paper, the 
motion of the ammonia molecule is described by five co- 
ordinates, allowing for a tumbling motion, similar to that 
given by Hoser, Prandl, Schiebel & Heger (1990): the axis 
of the ammonia molecule and the coordinate axis are no 
longer parallel. The intersection of the two axes is taken as 
a constraint into the fit, which couples the Euler angle qo to 
x and y. So with one additional parameter, Rw improves to 
0.043. If the third Euler angle is also used as a parameter, 
Rw reduces to 0.040. But the qo and ~b are strongly cor- 
related and therefore poorly defined, which is obviously 
linked to the small value of 0. The reduction of (U2)D± is 
explained analogously to the decrease of/u2~ N 

/ I" 
These results are in general agreement wi~ those of 

Hoser, Prandl, Schiebel & Heger (1990). Finally, the 
model presented in § 3, with discrete displacements and 
a continuous description for the orientational p.d.f, was 
refined. With 11 parameters, an Rw -- 0.10 was obtained, 
which compares unfavourably with model B. As men- 
tioned at the end of § 3, the parameters c3 and A are 
strongly correlated so only the product could be refined. 

transform of a 'bent' p.d.f. (e.g. harmonic motion in an 
angular variable) is not available. Alternatively, one can 
start with a rigid ND3 group that moves on a spherical 
surface. A structure factor is obtained by expanding into 
symmetry-adapted surface harmonics within the molec- 
ular frame and then transforming to the crystal frame, 
where a corresponding distribution function introduces 
both the tumbling of the dipolar axis and the rotation 
around this axis. While it is rather straightforward to for- 
mulate such a structure factor, there are too many param- 
eters involved when the only restriction imposed is sym- 
metry. Hence, it is necessary to calculate the expansion 
coefficients as a function of the parameters of a mechanis- 
tic model. While this is rather tedious work, a compara- 
tively simple case without RT coupling that can be found 
in B6e (1988) sketches the approach. 

An alternative way to analyse RT coupling was used by 
Schiebel, Hoser, Prandl & Heger (1990): the disordered 
density is first separated from the total scattering density 
of the crystal by Fourier methods. Then it is interpreted in 
terms of a model that introduces the potential at the crystal 
sites via a Boltzmann factor. 

5. Concluding remarks 

The structure factor calculated in § 2 presents an alter- 
native to the split-molecule approach. We have demon- 
strated that the two methods yield equivalent results in 
the case of planar motion. The continuous description em- 
phasizes the physical origin of the p.d.f, but does not pro- 
vide a direct visualization of the scattering density distri- 
bution. A p.d.f, map must be calculated for this purpose. 
One also has to be careful in interpreting the data of a split- 
molecule approach as the overlap of thermal ellipsoids 
suggests the calculation of a p.d.f, map in this case, too. 
The advantage of the continuous description lies in the 
possibility of increasing successively the number of pa- 
rameters in the refinement and testing their relevance this 
way. This should be especially useful for data with limited 
information, as in the cases of a restricted 20 range, crys- 
tal powder data or the presence of a large amount of disor- 
der. As the example in this paper is based on high-quality 
single-crystal data with a large range in Q, the refinement 
requires more elaborate models. 

The results of the split-molecule approach suggest an 
extension of the continuous distribution formulation from 
the planar to a more general curved motion. Unfortu- 
nately, it is not trivial to formulate structure factors that 
include this aspect. The problem is analogous to the gen- 
eralization of an ellipsoid-shaped p.d.f., representative for 
a harmonic motion to a 'bent' p.d.f. Either this is done 
by a generalization of the structure factor to a cumulant 
expansion or by an additional factor, which consists of a 
power series in the components of Q. In both cases, sym- 
metry leads to a reduction of terms and, in both cases, 
the analytic connection to expressions for the p.d.f, has 
to be taken with caution (International Tables for X-ray 
Crystallography, 1974). Unfortunately, a direct Fourier 

Part of this work was supported by the Bundesminis- 
ter fiir Forschung und Technologie (BMFT) under grants 
03PR3KIE and 03PR3TUE. We express our thanks to A. 
Hoser for supplying the Ni(ND3)6Br2 data and A. Hiiller 
for discussions. 

APPENDIX 
Formal development 

Obviously, both the molecular symmetry and the site sym- 
metry determine which coefficients in an expansion into 
trigonometric functions contribute. In order to demon- 
strate the effect of the molecular symmetry, we follow ex- 
actly the same strategy as Press & Hiiller (1973): a primed 
molecular frame (~') rotating with the molecule and an 
unprimed crystal frame (~) are introduced. An expansion 
of the angular part of the scattering-length density g(~') 
in the molecular frame (equilateral triangle) only yields 
terms of an order that conforms with the symmetry of the 
molecule. Therefore, only ¢m with m = 3l are nonzero and 

oo 

g(qo') = E c3t exp (i3lqJ) + C_3l exp ( - i3 l~ ' )  
1 = 0  

oQ 

= E b3lCOS (3lqJ), (6) 
/ = 0  

where 
C31 = ¢-31 = b3l/2 

is given by the mirror symmetry. The expansion coeffi- 
cients can easily be determined: 

ff c3t = (1/27r) g(~') exp (i31~')d~'. (7) 
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The transformation to the crystal frame is very simple in 
the 2D case: qo' = qo - A~ and, obviously, exp ( i l~)  = 
exp ( i lqd )exp  (i/Aqo). One can now express the angular 
part of the scattering-length density for neutron or X-ray 
scattering in the unprimed crystal frame: 

(x) 

g(qo) = ½ E b3t[exp (i3lqo - i3/A~p) 
/=0 

+ exp (-i31qo + i31A~p)]. (8) 

The orientational distribution of the molecule is intro- 
duced by a distribution function f (A~)  and the angular 
part of the p.d.f, in the crystal frame is expressed as the 
convolution 

a(~p) = (1/20r) g(~)f(A~)d(A~), (9) 

wheref(Aqo) can be expanded into a Fourier series 

(x) 

f(Aqo) = Z A k e x p  (ikAqo)+A-kexp ( - ikA~).  (10) 
k;O 

Insertion of (8) and (10) into (9) and integration over Aqo 
yields 

oo 

1 Z [ A a l b 3 l  exp (i3hp) + A_3lb3l exp (-i3/qo)]. a(~) = 
l=0 

(11) 
Immediate expansion of a(~) into trigonometric functions 

gives 
oo 

a(~) -- Z [ a t  exp (i3/qo) + a - t  exp (-i3/~)] 
l=0 

(12) 

and, therefore, 
1 

al = iA3lb31. (13) 

Hence, only terms of the same order 31 appear. This is also 
true in the presence of RT coupling, that is in the terms 

(1) ^(2) 
Prot,/)rot, • • ", i n t r o d u c e d  in the  paper .  
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